25 research outputs found

    Maculosin, a non-toxic antioxidant compound isolated from Streptomyces sp. KTM18

    Get PDF
    Context Streptomyces species are prolific sources of bioactive secondary metabolites known especially for their antimicrobial and anticancer activities. Objective This study sought to isolate and characterize antioxidant molecules biosynthesized by Streptomyces sp. KTM18. The antioxidant potential of an isolated compound and its toxicity were accessed. Materials and methods The compound was purified using bioassay-guided chromatography techniques. Nuclear magnetic resonance (NMR) experiments were carried out for structure elucidation. The antioxidant potential of the isolated compound was determined using DPPH free radical scavenging assay. The toxicity of the isolated compound was measured using a brine shrimp lethality (BSL) assay. Results Ethyl acetate extract of Streptomyces sp. KTM18 showed more than 90% inhibition of DPPH free radical at 50 mu g/mL of the test concentration. These data were the strongest among 13 Streptomyces isolates (KTM12-KTM24). The active molecule was isolated and characterized as maculosin (molecular formula, C14H16N2O3 as determined by the [M + H](+) peak at 261.1259). The DPPH free radical scavenging activity of pure maculosin was higher (IC50, 2.16 +/- 0.05 mu g/mL) than that of commercial butylated hydroxyanisole (BHA) (IC50, 4.8 +/- 0.05 mu g/mL). No toxicity was observed for maculosin (LD50, <128 mu g/mL) in brine shrimp lethality assay (BSLA) up to the compound's antioxidant activity (IC50) concentration range. The commercial standard, berberine chloride, showed toxicity in BSLA with an LD50 value of 8.63 +/- 0.15 mu g/mL. Conclusions Maculosin may be a leading drug candidate in various cosmetic and therapeutic applications owing to its strong antioxidant and non-toxic properties

    MicroRNA-31 is required for astrocyte specification

    Get PDF
    Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.

    Get PDF
    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness

    Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer.

    No full text
    Epidermal growth factor receptor (EGFR) is a pro-tumorigenic receptor tyrosine kinase that facilitates growth for cancer cells that overexpress the receptor. Monoclonal anti-EGFR antibody Cetuximab (CTX) provides significant clinical benefit in patients with head and neck squamous cell carcinoma (HNSCC). Missense mutations in the ectodomain (ECD) of EGFR can be acquired under CTX treatment and mimic the effect of large deletions on spontaneous untethering and activation of the receptor. Little is known about the contribution of EGFR ECD mutations to EGFR activation and CTX resistance in HNSCC. We identified two concurrent non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD in patient-derived HNSCC cells that were selected for CTX resistance through repeated exposure to the agent in an effort to mimic what may occur clinically. Structural modeling predicted that the G33S and N56K mutants would restrict adoption of a fully closed (tethered) and inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation, leading to persistent downstream AKT signaling. Our results demonstrate that HNSCC cells can select for EGFR ECD mutations under CTX exposure that converge to trap the receptor in an open, ligand-independent, constitutively activated state. These mutants impede the receptor's competence to bind CTX possibly explaining certain cases of CTX treatment-induced or de novo resistance to CTX

    COVID-19 in Patients with Multiple Sclerosis: Associations with Disease-Modifying Therapies

    No full text
    Background Disease-modifying therapies (DMTs) for multiple sclerosis (MS) target immunity and have the potential to increase the risk of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and alter its clinical course. We assessed these risks in patients with MS (PwMS). Objective The objective of this study was to describe the overall risk of coronavirus disease 2019 (COVID-19) infection, severe disease course, and potential population-level predictors of COVID-19 infection in PwMS, and to provide a context using a cohort of patients with systemic lupus erythematosus (SLE). In addition, the association of different MS DMTs with the incidence and clinical course of COVID-19 was evaluated. Safety data from the Biogen Global Safety Database are also presented on reported cases of COVID-19 in patients treated with Biogen MS therapies. Methods The IBM(R) Explorys electronic health record database of &gt; 72,000,000 patients from US healthcare networks identified patients with MS or SLE, with and without polymerase chain reaction-confirmed COVID-19. COVID-19 cumulative incidence, hospitalization, and deaths among DMT classes were compared using logistic regression (adjusted for age, sex, body mass index, comorbidities, and race/ethnicity). As a secondary data source to assess safety data, COVID-19 reports for Biogen MS therapies were extracted and described from Biogen's Global Safety Database. Results 30,478 PwMS with an open DMT prescription were identified within Explorys; 344 were COVID-19 positive. The most significant risk factors for acquiring COVID-19 were comorbidity score &gt;= 1, body mass index &gt;= 30, and Black/African ancestry. Similar risk factors were also identified for patients with SLE. Patients with MS were less likely to develop COVID-19 when treated with interferons (0.61%) and glatiramer acetate (0.51%), vs all other MS DMTs (both p &lt; 0.001); anti-CD20 therapy was associated with the highest risk (3.45%; p &lt; 0.0001). In the Biogen Global Safety Database, we identified 1217 patients who were COVID-19 positive treated with intramuscular interferon beta-1a, peginterferon beta-1a, natalizumab, dimethyl fumarate, diroximel fumarate, or fampridine. Conclusions Comorbidities, obesity, and Black/African ancestry, but not age, were associated with a higher risk of SARS-CoV-2 infection in PwMS. Interferons and glatiramer acetate were associated with a reduced COVID-19 risk, whereas anti-CD20 therapies were associated with an increased risk, within the treated MS cohort. COVID-19 safety reports for patients receiving Biogen MS therapies were consistent with the Explorys database and MS literature, illustrating the replicability and power of this approach

    Activation of STAT3 by TNF-α Treatment Induces <i>SOCS3</i> and <i>cIAP2</i> Expression.

    No full text
    <p><b>A</b>, U251-MG cells were stimulated with TNF-α (10 ng/ml) for the indicated times, lysed and immunoblotted with the indicated Ab. <b>B & C</b>, U87-MG cells were stimulated with TNF-α (10 ng/ml) for the indicated times. RNA was isolated, followed by generation of cDNA, and qRT-PCR was performed for the indicated genes. Data are shown as replicates of three and the experiment repeated with similar results observed. *, p<0.05.</p

    TNF-α-induced STAT3 Activation is Dependent on NF-κB p65.

    No full text
    <p><b>A & B</b>, U251-TR/<i>sh-p65</i> cells were incubated with tetracycline (Tet) for 48 h prior to stimulation with TNF-α (10 ng/ml) for the indicated times. Cells were lysed and immunoblotted with the indicated Ab (A) or RNA was isolated, followed by generation of cDNA, and qRT-PCR was performed for the indicated genes (B). Densitometric values of p-STAT3, p-p65 and total p65 were normalized to total STAT3, total p65 and GAPDH, respectively. Data are shown as replicates of three. **, p<0.01.</p

    TNF-α Induces IL-6 and LIF Expression in Glioma Cells.

    No full text
    <p><b>A&B,</b> U251-MG and X1016 cells were treated with TNF-α (10 ng/ml) for the indicated times. RNA was isolated followed by generation of cDNA, and qRT-PCR was performed for the indicated genes. Data are shown as replicates of three and the experiment repeated with similar results observed. *, p<0.05. <b>C-F,</b> Supernatants were collected from U251-MG and X1016 cells stimulated with TNF-α for the indicated times, and quantitation of secreted IL-6 was measured by ELISA. Data are shown as replicates of three and the experiment repeated with similar results observed. *, p<0.05.</p
    corecore